🤿 Wzory Na Potęgi I Pierwiastki

Jeśli szukasz wzorów matematycznych do egzaminu maturalnego z matematyki, to ten plik pdf jest dla Ciebie. Znajdziesz tu wzory z różnych działów matematyki, takich jak algebra, geometria, trygonometria, funkcje, prawdopodobieństwo i statystyka. Plik jest zgodny z wymaganiami OKE Gdańsk i zawiera przykłady zadań i rozwiązań.
Witam! Dzisiaj podsumuję podstawowe wzory wykorzystywane podczas wykonywania działań na potęgach i pierwiastkach. Z pewnością przyda się to Wam podczas powtórzenia przed sprawdzianem w klasie ósmej (dział “Działania na liczbach”), ale również podczas przygotowania do egzaminu ósmoklasisty. Zapraszam! Działania na potęgach Odnośnie iloczynu potęg mamy następujące wzory: Powyższe wzory oznaczają, że jeśli chcemy wymnożyć przez siebie potęgi dwóch liczb o tym samym wykładniku, to możemy najpierw wymnożyć przez siebie podstawy potęg a następnie otrzymany wynik podnieść do odpowiedniej potęgi. Na przykład: Jednak znacznie częściej będziemy stosować wzory w przeciwnej kolejności, czyli rozbijać podstawę potęgi na iloczyn dwóch liczb, potęgując oddzielnie każda z nich: Podobnie działać będą wzory dla ilorazów: Lub zapisując iloraz jako ułamek zwykły: Należy pamiętać, że mnożenie zapisane za pomocą dwukropka “” w starszych klasach przeważnie zapisujemy przy pomocy kreski ułamkowej (przypomnij sobie temat “Ułamek jako wynik dzielenia”). Daje nam to możliwość łatwiejszego przekształcania bardziej skomplikowanych wyrażeń na przykład poprzez skracanie licznika z mianownikiem. Podajmy jeszcze kilka przykładów: Ostatni wzór to tzw. “potęga potęgi”, czyli: Przykład: Pytanie kontrolne: Co widzisz patrząc na wyrażenie ?Odpowiedź: Dwadzieścia cztery wymnożone przez siebie dziesiątki (jeśli nie pamiętasz dlaczego, to odwołuję to tematu “Potęga o wykładniku naturalnym”). Dalsze wzory dotyczą iloczynu i ilorazu potęg o jednakowych podstawach: lub: Przykłady: – przekształcenie stosowane m. in. w działaniach na liczbach zapisanych w postaci notacji wykładniczej. Dokładniej omówiona lekcja znajduje się poniżej: Działania na pierwiastkach W przypadku pierwiastków sytuacja jest bardzo podobna do działań na potęgach: lub: Przedstawmy jeszcze kilka przykładów zastosowania powyższych wzorów: Thank You For Your Vote! Sorry You have Already Voted!
oblicza potęgi o wykładnikach wymiernych i stosuje prawa działań na potęgach (PP 1.4) wykorzystuje definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym (PP 1.6) używa wzorów skróconego mnożenia na (a ±b)2 oraz a2 – b2 (PP 2.1), w tym usuwa Potęga Niech n będzie liczbą całkowitą dodatnią. Dla dowolnej liczby a definiujemy jej n -tą potęgę: a n = a · … · a ⏟ n razy Pierwiastek arytmetyczny Pierwiastkiem arytmetycznym a n stopnia n z liczby a ≥ 0 nazywamy liczbę b ≥ 0 taką, że b n = a . W szczególności, dla dowolnej liczby a zachodzi równość: a n = | a | Jeżeli a ≤ 0 oraz liczba n jest nieparzysta, to a n oznacza liczbę b 0 : a − m n = 1 a m n Niech r s będą dowolnymi liczbami rzeczywistymi. Jeśli a > 0 i b > 0 , to zachodzą równości: a r · a s = a r + s a r s = a r · s a r a s = a r − s ( a · b ) r = a r · b r ( a b ) r = a r b r Jeżeli wykładniki r s są liczbami całkowitymi, to powyższe wzory obowiązują dla wszystkich liczb a ≠ 0 b ≠ 0 . W związku z tym bardzo często pojawi nam się konieczność skorzystania z poniższego wzoru na potęgę podniesioną do potęgi: (a m) n = a m x n. Przykład: (2 2) 3 = 2 2 x 3 = 2 6. Zadanie I: Zapisz poniższe działanie w postaci pojedynczej potęgi: 4 3 x 2 4. 4 3 to inaczej (2 2) 3 (2 2) 3 = 2 6. 4 3 x 2 4 = 2 6 x 2 4 = 2 10 PODSTAWY > Potęgi i pierwiastki (1) WZORY NA POTĘGI I PIERWIASTKIZagadnienia: matematyka - podstawówka, gimnazjum - potęgi i pierwiastki, wzory i ich wykorzystanie. Do wzorów na potęgi i pierwiastki, nie podchodzimy do końca jak do wzorów. Pokazują nam one, jakich uproszczeń możemy użyć w trakcie obliczeń. Czasami są niezbędne, bo bez ich wykorzystania, nie bylibyśmy wstanie wykonać działania (np. zabrakłoby miejsca na wyświetlaczu kalkulatora). Brak ich wykorzystania w zadaniach, w których jest to możliwe, zarówno podczas sprawdzianów w gimnazjum i liceum jak i podczas matury, zaowocuje zmniejszeniem liczby punktów przyznawanych za dane Wszystkie wzory można stosować w obie strony. W przypadku jakichkolwiek pytań zapraszamy na nasze forum :)
Podzielimy liczenie granic ciągów na cztery podstawowe grupy, do których podamy schematy rozwiązań. I grupa (podstawowe granice ciągów) Ciągi o wyrazie ogólnym postaci: , gdzie oznacza wielomian stopnia . 1. Wyłączamy z licznika i mianownika najwyższą potęgę mianownika: 2. Skracamy potęgi:
0punktów mistrzowskich do zdobyciaPodsumowanie zdobytych umiejętnościPotęgowanieUcz się sam(a)!ĆWICZENIEPotęgowanieRozwiąż co najmniej 5 z 7 pytań, aby przejść na następny poziom!Quiz 1Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 240 punktów 2Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 320 punktów 3Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 400 punktów 4Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 320 punktów 5Podnieś swoje umiejętności w zakresie powyższych zagadnień i zbierz 240 punktów swoje umiejętności w zakresie wszystkich tematów należących do tego rozdziału i zbierz 1900 punktów tym dzialeZrozumienie i rozwiązywanie wyrażeń potęgowych, pierwiastków i zapisu wykładniczego bez użycia algebry.
Potęgi, notacja wykładnicza, pierwiastki na maturze, czyli bardzo ważny element na maturze. Potęgi i pierwiastki wszędzie, w każdym dziale matematyki są wykorzystywane. Tutaj skupimy się na tym by się z nimi zaprzyjaźnić.

Kontakt Copyright © 2022 NETSTEL Software. All rights reserved

Mnożenie potęg o tej samej podstawie. Potęgi o tej samej podstawie mnożymy według wzoru: am ⋅an = am+n.
szkolnaZadaniaMatematyka To pytanie ma już najlepszą odpowiedź, jeśli znasz lepszą możesz ją dodać Najlepsza odpowiedź Herhor 1)a)...= (3a)^2 +2*3a*√3 +(√3)^2 =9a^2 +6a√3+3b)...= (2√2)^2 -2*2√2*5x +(5x)^2 = 8 -20√2 x +25x^22a)=√(4*3) +√(25*3) +√(4*6) +√(16*6) =2√3+5√3+2√6+4√6 =7√3+8√6b)...= 5*1 -3*4+2*11 = 5-12+22 = ...= 4^{1/3}*4^{2/3} +3^{1/3}*3^{2/3} = 4^{1/3+2/3} +3^{1/3+2/3|==4+3=7b) ...= 5^{-3}*5^{6/3} *5^{4*?} = 5^{-3+2+4*?} = 5^4*?-1}=... Nie wiem,co w wykładniku przy 625 :(Pozostałe zrób podobnie, tzn. naśladując METODĘ o 23:16
Działania na potęgach o wykładniku naturalnym. Najpierw popatrzmy na działania do których mamy wzory, czyli do mnożenia, dzielenia i potęgi potęg. Mnożenie potęg o tych samych podstawach i wykładnikach naturalnych. I tutaj kojarzysz, już to, że podstawy muszą być takie same, to wykładniki możemy dodać. Dokładnie o tym mówię:
Niech n będzie liczbą całkowitą dodatnią. Dla dowolnej liczby a definiujemy jej n–tą potęgę:(mnożymy a przez siebie tyle razy, ile wynosi n) Pierwiastkiem arytmetycznym stopnia n z liczby a ≥ 0 nazywamy liczbę b ≥ 0 taką, że bn =a. W szczególności, dla dowolnej liczby a zachodzi równość: √a2 = |a| Jeżeli a 0 i b > 0 , to zachodzą równości: ar • a = ar + s (ar) = ar • s (a • b)r = ar • br Jeżeli wykładniki r, są liczbami całkowitymi, to powyższe wzory obowiązują dla wszystkich liczb a ≠ 0 i b ≠ 0. Źródło: Centralna Komisja Egzaminacyjna,
Bardzo często spotykamy się z zadaniami, które dotyczą rozwiązywania działań na potęgach. Poniżej przedstawione zostały wzory, które ułatwią nam rozwiązywanie takich działań. Mnożenie potęg o takich samych podstawach: a m + a n = a m+n. Przykład: Rozwiąż następujące działanie: 2 2 • 2 3. 2 2 • 2 3 = 2 2+3 =2 5 =32 Wyświetlane 1-6 z 6 zadań Potęga o wykładniku ujemnym Zadanie 1 Oblicz: Jeśli w wykładniku potęgi znajduje się minus ( potęga o wykładniku ujemnym) to aby go usunąć należy odwrócić podstawę tej Dzielenie potęg o tym samym wykładniku Zadanie 1 Korzystając ze wzoru na dzielenie (iloraz) potęg o tych samych wykładnikach zapisz w możliwie najprostszej postaci. Dzieląc potęgi o tych samych wykładnikach… Mnożenie potęg o tym samym wykładniku Zadanie 1 Korzystając ze wzoru na mnożenie potęg o tym samym wykładniku zapisz w możliwie najprostszej postaci. Mnożąc potęgi o tych samych wykładnikach korzystamy… Dzielenie potęg o tej samej podstawie Zadanie 1 Przedstaw w postaci jednej potęgi. Dzieląc potęgi o tych samych podstawach korzystamy ze wzorów: Zgodnie z powyższymi wzorami podstawę potęgi przepisujemy bez… Mnożenie potęg o tej samej podstawie Zadanie 1Przedstaw w postaci jednej potęgi. Mnożąc potęgi o tych samych podstawach korzystamy ze wzoru:Zgodnie z powyższym wzorem podstawę potęgi przepisujemy bez zmian, natomiast… Dodawanie i odejmowanie pierwiastków Zadanie 1 Oblicz: Pierwiastki możemy dodawać do siebie lub odejmować tylko wtedy, gdy są one tego samego stopnia i mają tę samą liczbę podpierwiastkową. Mówimy,… Bardzo często omawiając potęgi spotyka się zmianę ich postaci. Na przykład. 64 = 8 2 = 4 3 = 2 6. W tym przypadku liczba 64 jest potęgą liczby 8, bo 8 2 = 64, jest też potęgą liczby 4, bo 4 3 = 64 oraz jest również potęgą liczby 2, ponieważ 2 6 = 64. W zadaniach niżej dość często występuje takie zmienianie wyglądu potęgi.
Spis treści 1. WARTOŚĆ BEZWZGLĘDNA LICZBY 2. POTĘGI I PIERWIASTKI 3. LOGARYTMY 4. SILNIA. WSPÓŁCZYNNIK DWUMIANOWY 5. WZÓR DWUMIANOWY NEWTONA 6. WZORY SKRÓCONEGO MNOŻENIA 7. CIĄGI • Ciąg arytmetyczny • Ciąg geometryczny • Procent składany 8. FUNKCJA KWADRATOWA • Wzory Viéte’a 9. GEOMETRIA ANALITYCZNA • Odcinek • Wektory • Prosta • Prosta i punkt • Para prostych • Trójkąt • Przekształcenia geometryczne • Równanie okręgu 10. PLANIMETRIA • Cechy przystawania trójkątów • Cechy podobieństwa trójkątów • Twierdzenie sinusów • Twierdzenie cosinusów • Wzory na pole trójkąta • Twierdzenie Pitagorasa • Związki miarowe w trójkącie prostokątnym • Trójkąt równoboczny • Twierdzenie Talesa • Czworokąty • Koło • Wycinek koła • Kąty w okręgu • Twierdzenie o kącie między styczną i cięciwą • Twierdzenie o odcinkach stycznych • Twierdzenie o odcinkach siecznej i stycznej • Okrąg opisany na czworokącie • Okrąg wpisany w czworokąt 11. STEREOMETRIA • Twierdzenie o trzech prostych prostopadłych • Prostopadłościan • Graniastosłup prosty • Ostrosłup • Walec • Stożek • Kula 12. TRYGONOMETRIA • Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym • Definicje funkcji trygonometrycznych • Wykresy funkcji trygonometrycznych • Związki między funkcjami tego samego kąta • Niektóre wartości funkcji trygonometrycznych • Funkcje sumy i różnicy kątów • Funkcje podwojonego kąta • Sumy, różnice i iloczyny funkcji trygonometrycznych • Wybrane wzory redukcyjne • Okresowość funkcji trygonometrycznych 13. KOMBINATORYKA • Wariacje z powtórzeniami • Wariacje bez powtórzeń • Permutacje • Kombinacje 14. RACHUNEK PRAWDOPODOBIEŃSTWA • Własności prawdopodobieństwa • Twierdzenie: Klasyczna definicja prawdopodobieństwa • Prawdopodobieństwo warunkowe • Twierdzenie o prawdopodobieństwie całkowitym 15. PARAMETRY DANYCH STATYSTYCZNYCH • Średnia arytmetyczna • Średnia ważona • Średnia geometryczna • Mediana • Wariancja i odchylenie standardowe 16. GRANICA CIĄGU • Granica sumy, różnicy, iloczynu i ilorazu ciągów • Suma wyrazów nieskończonego ciągu geometrycznego 17. POCHODNA FUNKCJI • Pochodna sumy, różnicy, iloczynu i ilorazu funkcji • Pochodne niektórych funkcji • Równanie stycznej 18. TABLICA WARTOŚCI FUNKCJI TRYGONOMETRYCZNYCH ⇑1. WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględną liczby rzeczywistej x definiujemy wzorem:Liczba x jest to odległość na osi liczbowej punktu x od punktu dowolnej liczby x mamy:|x| ≥ 0|x| = 0 wtedy i tylko wtedy, gdy x = 0|–x| = |x|Dla dowolnych liczb x, y mamy:|x + y| ≤ |x| + |y||x – y| ≤ |x| + |y||x · y| = |x| · |y|Ponadto, jeśli y ≠ 0 , toDla dowolnych liczb a oraz r ≥ 0 mamy:|x – a| ≤ r wtedy i tylko wtedy, gdy a – r ≤ x ≤ a + r|x – a| ≥ r wtedy i tylko wtedy, gdy x ≤ a – r lub x ≥ a + r⇑2. POTĘGI I PIERWIASTKINiech n będzie liczbą całkowitą dodatnią. Dla dowolnej liczby a definiujemy jej n-tą potęgę:Pierwiastkiem arytmetycznym stopnia n z liczby a ≥ 0 nazywamy liczbę b ≥ 0 taką, że bn = a. W szczególności, dla dowolnej liczby a zachodzi równość:Jeżeli a 0 i b > 0, to zachodzą równości:Jeżeli wykładniki r, s są liczbami całkowitymi, to powyższe wzory obowiązują dla wszystkich liczb a ≠ 0 i b ≠ 0.⇑3. LOGARYTMYLogarytmem logac dodatniej liczby c przy dodatniej i różnej od 1 podstawie a nazywamy wykładnik b potęgi, do której należy podnieść a, aby otrzymać c:logac = b wtedy i tylko wtedy, gdy ab = c Równoważnie:alogac = cDla dowolnych liczb x > 0 , y > 0 oraz r zachodzą wzory:Wzór na zamianę podstawy logarytmu:jeżeli a > 0 , a ≠ 1 , b > 0, b ≠ 1 oraz c > 0, toLogarytm log10x można też zapisać jako log x lub lg x.⇑4. SILNIA. WSPÓŁCZYNNIK DWUMIANOWYSilnią liczby całkowitej dodatniej n nazywamy iloczyn kolejnych liczb całkowitych od 1 do n włącznie:n! = 1 ⋅ 2 ⋅ ... ⋅ nPonadto przyjmujemy umowę, że 0! = dowolnej liczby całkowitej n ≥ 0 zachodzi związek:(n + 1)! = n! ⋅ (n + 1)Dla liczb całkowitych n, k spełniających warunki0 ≤ k ≤ ndefiniujemy współczynnik dwumianowy Zachodzą równości:⇑5. WZÓR DWUMIANOWY NEWTONADla dowolnej liczby całkowitej dodatniej n oraz dla dowolnych liczb a, b mamy:⇑6. WZORY SKRÓCONEGO MNOŻENIADla dowolnych liczb a, b:(a + b)2 = a2 + 2ab + b2(a – b)2 = a2 – 2ab + b2(a + b)3 = a3 +3a2b + 3ab2 + b3(a – b)3 = a3 – 3a2b + 3ab2 – b3Dla dowolnej liczby całkowitej dodatniej n oraz dowolnych liczb a, b zachodzi wzór:an – bn = (a – b)(an–1 + an–2b + ... + an–kbk–1 + ... + abn–2 + bn–1W szczególności:a2 – b2 = (a – b)(a + b)a3 – b3 = (a – b)(a2 + ab + b2)a3 + b3 = (a + b)(a2 – ab + b2)a2 – 1 = (a – 1)(a + 1)a3 – 1 = (a – 1)(a2 + a + 1)a3 + 1 = (a + 1)(a2 – a + 1)an – 1 = (a – 1)(an–1 + an–2 + ... + a + 1)⇑7. CIĄGI⇑• Ciąg arytmetycznyWzór na n-ty wyraz ciągu arytmetycznego (an) o pierwszym wyrazie a1 i różnicy r: an = a1 + (n − 1) rWzór na sumę Sn = a1 + a2 + ... + an początkowych n wyrazów ciągu arytmetycznego:Między sąsiednimi wyrazami ciągu arytmetycznego zachodzi związek:⇑• Ciąg geometrycznyWzór na n-ty wyraz ciągu geometrycznego (an) o pierwszym wyrazie a1 i ilorazie q:an = a1 ⋅ qn − 1 dla n ≥ 2Wzór na sumę Sn = a1 + a2 + ... + an początkowych n wyrazów ciągu geometrycznego:Między sąsiednimi wyrazami ciągu geometrycznego zachodzi związek:⇑• Procent składanyJeżeli kapitał początkowy K złożymy na n lat w banku, w którym oprocentowanie lokat wynosi p% w skali rocznej i kapitalizacja odsetek następuje po upływie każdego roku trwania lokaty, to kapitał końcowy Kn wyraża się wzorem:⇑8. FUNKCJA KWADRATOWAPostać ogólna funkcji kwadratowej:Wzór każdej funkcji kwadratowej można doprowadzić do postaci kanonicznej:Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie o współrzędnych (p,q). Ramiona paraboli skierowane są do góry, gdy a > 0 ; do dołu, gdy a 0, to funkcja kwadratowa ma dwa miejsca zerowe (trójmian kwadratowy ma dwa różne pierwiastki rzeczywiste, równanie kwadratowe ma dwa rozwiązania rzeczywiste):Jeśli ∆ ≥ 0 , to wzór funkcji kwadratowej można doprowadzić do postaci iloczynowej:⇑• Wzory Viéte’aJeśli ∆ ≥ 0 , to ⇑9. GEOMETRIA ANALITYCZNA⇑• OdcinekDługość odcinka o końcach w punktachjest dana wzorem:Współrzędne środka odcinka AB:⇑• WektoryWspółrzędne wektora :Jeżeli są wektorami, zaś a jest liczbą, to⇑• ProstaRównanie ogólne prostej:Ax + By + C = 0,gdzie A2 + B2 ≠ 0 (tj. współczynniki A, B nie są równocześnie równe 0).Jeżeli A = 0, to prosta jest równoległa do osi Ox; jeżeli B = 0, to prosta jest równoległa do osi Oy;jeżeli C = 0, to prosta przechodzi przez początek układu prosta nie jest równoległa do osi Oy, to ma ona równanie kierunkowe:y = ax + bLiczba a to współczynnik kierunkowy prostej:a = tg αWspółczynnik b wyznacza na osi Oy punkt, w którym dana prosta ją kierunkowe prostej o współczynniku kierunkowym a, która przechodzi przez punkt P = (x0,y0):y = a(x − x0) + y0Równanie prostej, która przechodzi przez dwa dane punkty A = (xA,yA), B = (xB,yB) ⇑• Prosta i punktOdległość punktu P = (x0,y0) od prostej o równaniu Ax + By + C = 0 jest dana wzorem:⇑• Para prostychDwie proste o równaniach kierunkowych:spełniają jeden z następujących warunków:– są równoległe, gdy a1 = a2– są prostopadłe, gdy a1a2 = − 1– tworzą kąt ostry φ i Dwie proste o równaniach ogólnych:A1x + B1y + C1 = 0A2x + B2y + C2 = 0– są równoległe, gdy A1B2 − A2B1 = 0– są prostopadłe, gdy A1A2 + B1B2 = 0– tworzą kąt ostry φ i ⇑• TrójkątPole trójkąta ABC o wierzchołkachjest dane wzorem:Środek ciężkości trójkąta ABC, czyli punkt przecięcia jego środkowych, ma współrzędne:⇑• Przekształcenia geometryczne– przesunięcie o wektor przekształca punkt A = (x,y) na punkt A'= (x + a,y + b)– symetria względem osi Ox przekształca punkt A = (x,y) na punkt A' = (x,−y)– symetria względem osi Oy przekształca punkt A = (x,y) na punkt A' = (−x,y)– symetria względem punktu (a,b) przekształca punkt A = (x,y) na punkt A' = (2a − x,2b − y)– jednokładność o środku w punkcie O i skali s ≠ 0 przekształca punkt A na punkt A' taki, że a więc, jeśli O = (x0,y0) , to jednokładność ta przekształca punkt A = (x,y) na punkt ⇑• Równanie okręguRównanie okręgu o środku w punkcie S = (a,b) i promieniu r > 0:lub⇑10. PLANIMETRIA⇑• Cechy przystawania trójkątówTo, że dwa trójkąty ABC i DEF są przystające (∆ABC ≡ ∆DEF) , możemy stwierdzić na podstawie każdej z następujących cech przystawania trójkątów:– cecha przystawania „bok – bok – bok”:odpowiadające sobie boki obu trójkątów mają te same długości:– cecha przystawania „bok – kąt – bok”:dwa boki jednego trójkąta są równe odpowiadającym im bokom drugiego trójkąta oraz kąt zawarty między tymi bokami jednego trójkąta ma taką samą miarę jak odpowiadający mu kąt drugiego trójkąta, np.– cecha przystawania „kąt – bok – kąt”:jeden bok jednego trójkąta ma tę samą długość, co odpowiadający mu bok drugiego trójkąta oraz miary odpowiadających sobie kątów obu trójkątów, przyległych do boku, są równe, np.⇑• Cechy podobieństwa trójkątówTo, że dwa trójkąty ABC i DEF są podobne (∆ABC ~ ∆DEF) , możemy stwierdzić na podstawie każdej z następujących cech podobieństwa trójkątów:– cecha podobieństwa „bok – bok – bok”:długości boków jednego trójkąta są proporcjonalne do odpowiednich długości boków drugiego trójkąta, np.– cecha podobieństwa „bok – kąt – bok”:długości dwóch boków jednego trójkąta są proporcjonalne do odpowiednich długości dwóch boków drugiego trójkąta i kąty między tymi parami boków są przystające, np.– cecha podobieństwa „kąt – kąt – kąt”:dwa kąty jednego trójkąta są przystające do odpowiednich dwóch kątów drugiego trójkąta (więc też i trzecie kąty obu trójkątów są przystające:Przyjmujemy oznaczenia w trójkącie ABC:a, b, c – długości boków, leżących odpowiednio naprzeciwko wierzchołków A, B, C2p=a+b+c – obwód trójkątaα, β, γ – miary kątów przy wierzchołkach A, B, Cha, hb, hc – wysokości opuszczone z wierzchołków A, B, CR, r – promienie okręgów opisanego i wpisanego⇑• Twierdzenie sinusów⇑• Twierdzenie cosinusówa2 = b2 + c2 – 2bc cosαb2 = a2 + c2 – 2ac cosβc2 = a2 + b2 – 2ab cosγ⇑• Wzory na pole trójkąta⇑• Twierdzenie Pitagorasa(wraz z twierdzeniem odwrotnym do niego)W trójkącie ABC kąt γ jest prosty wtedy i tylko wtedy, gdy a2 + b2 = c2⇑• Związki miarowe w trójkącie prostokątnymZałóżmy, że kąt γ jest prosty. Wówczas:⇑• Trójkąt równoboczny ⇑• Twierdzenie Talesa(wraz z twierdzeniem odwrotnym do niego)Różne proste AC i BD przecinają się w punkcie P, przy czym spełniony jest jeden z warunków:– punkt A leży wewnątrz odcinka PC oraz punkt B leży wewnątrz odcinka PDlub– punkt A leży na zewnątrz odcinka PC oraz punkt B leży na zewnątrz odcinka proste AB i CD są równoległe wtedy i tylko wtedy, gdy⇑• CzworokątyTrapezCzworokąt, który ma co najmniej jedną parę boków na pole trapezu:RównoległobokCzworokąt, który ma dwie pary boków na pole równoległoboku:RombCzworokąt, który ma wszystkie boki jednakowej na pole rombu:DeltoidCzworokąt wypukły, który ma oś symetrii zawierającą jedną z na pole deltoidu:⇑• KołoWzór na pole koła o promieniu r:P = πr2Obwód koła o promieniu r:L = 2πr⇑• Wycinek kołaWzór na pole wycinka koła o promieniu r i kącie środkowym αwyrażonym w stopniach:Długość łuku AB wycinka koła o promieniu r i kącie środkowym α wyrażonym w stopniach:⇑• Kąty w okręgu Miara kąta wpisanego w okrąg jest równa połowie miary kąta środkowego, opartego na tym samym kątów wpisanych w okrąg, opartych na tym samym łuku, są kątów wpisanych w okrąg, opartych na łukach równych, są równe.⇑• Twierdzenie o kącie między styczną i cięciwąDany jest okrąg o środku w punkcie O i jego cięciwa AB. Prosta AC jest styczna do tego okręgu w punkcie A. Wtedy |∢AOB| = 2 ⋅ |∢CAB|, przy czym wybieramy ten z kątów środkowych AOB, który jest oparty na łuku znajdującym się wewnątrz kąta CAB.⇑• Twierdzenie o odcinkach stycznychJeżeli styczne do okręgu w punktach A i B przecinają się w punkcie P, to|PA| = |PB|⇑• Twierdzenie o odcinkach siecznej i stycznejDane są: prosta przecinająca okrąg w punktach A i B oraz prosta styczna do tego okręgu w punkcie C. Jeżeli proste te przecinają się w punkcie P, to|PA| ⋅ |PB| = |PC|2⇑• Okrąg opisany na czworokącieNa czworokącie można opisać okrąg wtedy i tylko wtedy, gdy sumy miar jego przeciwległych kątów wewnętrznych są równe 180°:α + γ = β + δ = 180°⇑• Okrąg wpisany w czworokątW czworokąt wypukły można wpisać okrąg wtedy i tylko wtedy, gdy sumy długości jego przeciwległych boków są równe:a + c = b + d⇑11. STEREOMETRIA⇑• Twierdzenie o trzech prostych prostopadłychProsta k przebija płaszczyznę w punkcie P. Prosta l jest rzutem prostokątnym prostej k na tę m leży na tej płaszczyźnie i przechodzi przez punkt prosta m jest prostopadła do prostej k wtedy i tylko wtedy, gdy jest prostopadła do prostej oznaczenia:P – pole powierzchni całkowitejPp – pole podstawyPb – pole powierzchni bocznejV – objętość⇑• ProstopadłościanP = 2(ab + bc + ac)V = abcgdzie a, b, c są długościami krawędzi prostopadłościanu⇑• Graniastosłup prostyPb = 2p ⋅ hV = Pp ⋅ hgdzie 2p jest obwodem podstawy graniastosłupa⇑• OstrosłupV = 1⁄3 Pp ⋅ hgdzie h jest wysokością ostrosłupa⇑• WalecPb = 2πrhP = 2πr(r + h)V = πr2hgdzie r jest promieniem podstawy, h – wysokością walca⇑• StożekPb = πrlP = πr(r + l)V = 1⁄3 πr2hgdzie r jest promieniem podstawy, h – wysokością, l – długością tworzącej stożka⇑• KulaP = 4πr2V = 4⁄3 πr3 gdzie r jest promieniem kuli⇑12. TRYGONOMETRIA⇑• Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym⇑• Definicje funkcji trygonometrycznychpromieniem wodzącym punktu M⇑• Wykresy funkcji trygonometrycznych⇑• Związki między funkcjami tego samego kątadlak - całkowite⇑• Niektóre wartości funkcji trygonometrycznych⇑• Funkcje sumy i różnicy kątówDla dowolnych kątów α, β zachodzą równości:sin (α + β) = sin α cos β + cos α sin βsin (α – β) = sin α cos β – cos α sin βcos (α + β) = cos α cos β – sin α sin βcos (α – β) = cos α cos β + sin α sin βPonadto mamy równości:które zachodzą zawsze, gdy są określone i mianownik prawej strony nie jest zerem.⇑• Funkcje podwojonego kątasin 2α = 2sinα cosαcos 2α = cos2 α – sin2 α = 2cos2 α – 1 = 1 – 2 sin2 α⇑• Sumy, różnice i iloczyny funkcji trygonometrycznychsin α sin β = – ½ (cos (α + β) – cos (α – β))cos α cos β = ½ (cos (α + β) + cos (α – β))sin α cos β = ½ (sin (α + β) + sin (α – β))⇑• Wybrane wzory redukcyjnesin (90° – α) = cos αsin (90° + α) = cosαsin (180° – α) = sin αsin (180° + α) = – sin αcos (90° – α) = sin αcos (90° + α) = – sin αcos (180° – α) = – cos αcos (180° + α) = – cos αtg (180° – α) = – tg αtg (180° + α) = tg α⇑• Okresowość funkcji trygonometrycznychsin (α + k⋅360°) = sin αcos (α + k⋅360°) = cos αtg (α + k⋅180°) = tg αk – całkowite⇑13. KOMBINATORYKA⇑• Wariacje z powtórzeniamiLiczba sposobów, na które z n różnych elementów można utworzyć ciąg, składający się z k niekoniecznie różnych wyrazów, jest równa nk.⇑• Wariacje bez powtórzeńLiczba sposobów, na które z n różnych elementów można utworzyć ciąg, składający się z k (1 ≤ k ≤ n) różnych wyrazów, jest równa⇑• PermutacjeLiczba sposobów, na które n (n ≥ 1) różnych elementów można ustawić w ciąg, jest równa n!.⇑• KombinacjeLiczba sposobów, na które spośród n różnych elementów można wybrać k (0 ≤ k ≤ n) elementów, jest równa ⇑14. RACHUNEK PRAWDOPODOBIEŃSTWA⇑• Własności prawdopodobieństwa0 ≤ P(A) ≤ 1dla każdego zdarzenia A ⊂ ΩP(Ω) = 1Ω - zdarzenie pewneP(Ø) = 0Ø - zdarzenie niemożliwe (pusty podzbiór Ω)P(A) ≤ P(B)gdy A ⊂ B ⊂ ΩP(A') = 1 – P(A)gdzie A' oznacza zdarzenie przeciwne do zdarzenia AP(A ∪ B) = P(A) + P(B) – P(A ∩ B)dla dowolnych zdarzeń A, B ⊂ ΩP(A ∪ B) ≤ P(A) + P(B)dla dowolnych zdarzeń A, B ⊂ Ω⇑• Twierdzenie: Klasyczna definicja prawdopodobieństwaNiech Ω będzie skończonym zbiorem wszystkich zdarzeń elementarnych. Jeżeli wszystkie zdarzenia jednoelementowe są jednakowo prawdopodobne, to prawdopodobieństwo zdarzenia A ⊂ Ω jest równegdzie |A| oznacza liczbę elementów zbioru A, zaś |Ω| – liczbę elementów zbioru Ω.⇑• Prawdopodobieństwo warunkoweNiech A, B będą zdarzeniami losowymi zawartymi w Ω, przy czym P(B) > 0. Prawdopodobieństwem warunkowym P(A | B) nazywamy liczbę⇑• Twierdzenie o prawdopodobieństwie całkowitymJeżeli zdarzenia losowe B1, B2, ..., Bn zawarte w Ω spełniają warunki:1. B1, B2, ..., Bn są parami rozłączne, tzn. Bi ∩ Bj = ∅ dla i ≠ j,1 ≤ i ≤ n1 ≤ j ≤ n2. B1 ∪ B2 ∪ ... ∪ Bn = Ω3. P(Bi) > 0 dla 1 ≤ i ≤ nto dla każdego zdarzenia losowego A zawartego w Ω zachodzi równośćP(A) = P(A | B1) ⋅ P(B1) + P(A | B2) ⋅ P(B2) + ... + P(A | Bn) ⋅ P(Bn)⇑15. PARAMETRY DANYCH STATYSTYCZNYCH⇑• Średnia arytmetycznaŚrednia arytmetyczna n liczb a1 , a2 , ..., an jest równa: ⇑• Średnia ważonaŚrednia ważona n liczb a1 , a2 , ..., an , którym przypisano dodatnie wagi – odpowiednio: w1 , w2 , ..., wn jest równa:⇑• Średnia geometrycznaŚrednia geometryczna n nieujemnych liczb a1 , a2 , ..., an jest równa:⇑• MedianaMedianą uporządkowanego w kolejności niemalejącej zbioru n danych liczbowych a1 ≤ a2 ≤ a3 ≤ ... ≤ an jest:– dla n nieparzystych: (środkowy wyraz ciągu)– dla n parzystych: (średnia arytmetyczna środkowych wyrazów ciągu)⇑• Wariancja i odchylenie standardoweWariancją n danych liczbowych a1 , a2 , ..., an o średniej arytmetycznej jest liczba:Odchylenie standardowe σ jest pierwiastkiem kwadratowym z wariancji. ⇑16. GRANICA CIĄGU⇑• Granica sumy, różnicy, iloczynu i ilorazu ciągówDane są ciągi (an) i (bn), określone dla n ≥ ponadto bn ≠ 0 dla n ≥ 1 oraz b ≠ 0, to⇑• Suma wyrazów nieskończonego ciągu geometrycznegoDany jest nieskończony ciąg geometryczny (an), określony dla n ≥ 1, o ilorazie q. Niech (Sn) oznacza ciąg sum początkowych wyrazów ciągu (an), to znaczy ciąg określony wzoremSn = a1 + a2 + ... + andla n ≥ |q| < 1, to ciąg (Sn) ma granicęTę granicę nazywamy sumą wszystkich wyrazów ciągu (an).⇑17. POCHODNA FUNKCJI⇑• Pochodna sumy, różnicy, iloczynu i ilorazu funkcji⇑• Pochodne niektórych funkcjiNiech a, b, c będą dowolnymi liczbami rzeczywistymi, n dowolną liczbą całkowitą.⇑• Równanie stycznejJeżeli funkcja ƒ ma pochodną w punkcie x0, to równanie stycznej do wykresu funkcji ƒ w punkcie (x0, ƒ(x0)) dane jest wzoremy = ax + bgdzie współczynnik kierunkowy stycznej jest równy wartości pochodnej funkcji ƒ w punkcie x0, to znaczy a = ƒ′(x0), natomiast b = ƒ(x0) – ƒ′(x0) ⋅ x0. Równanie stycznej możemy zapisać w postaciy = ƒ′(x0) ⋅ (x – x0) + ƒ(x0)⇑18. TABLICA WARTOŚCI FUNKCJI TRYGONOMETRYCZNYCH

Potęga o wykładniku ujemnym. Opis. Zadanie 1. Oblicz: Jeśli w wykładniku potęgi znajduje się minus ( potęga o wykładniku ujemnym) to aby go usunąć należy odwrócić podstawę tej potęgi. W przypadku gdy liczbą podnoszoną do potęgi ujemnej jest ułamek stosujemy wzór:

PORCEL & 1²=1 2 =4 32=9 4² = 16 6²=25 6² = 36 4² = 49 a 1³=1 2 = 8 3=27 4³=64 WZORY na Pierwiastki i PoteGi an am= antm an. bh=(a.b)" m_n-m a: a = a a" : 6" = (a)" ·a²° = 1 -a n=1n & Plez wiastei → √a· √b = √a·b L> ²√a·•√6=√a·b KWADRATY do ZAPAmiętaniA 2 21 = 441 22 =484 23²-529 24² =576 25²-625 262=646 27²=129 L> √a: √6 = √a·b L> ²√α = √6 = √
Działania na wyrażeniach wykładniczych są oparte na wzorach na potęgi (PODSTAWY – potęgi i pierwiastki (1) – wzory na potęgi i pierwiastki oraz: MATERIAŁ MATURALNY – potęgi i pierwiastki ). Przypomnimy najważniejsze wzory, jakie są niezbędne: Wyrażenia wykładnicze składają się z podstaw i potęg. Mieliśmy już z nimi do Pierwiastki. Pierwiastkowanie Bardziej skomplikowane przykłady - zamienianie na potęgi-Każda liczba za wyjątkiem0 Wzory na potegi o wykladnikach znam wzór na obliczanie pierwiastka z iloczynu i ilorazu umiem wyłączyć czynnik przed znak pierwiastka oraz włączyć czynnik pod znak pierwiastka umiem mnożyć i dzielić pierwiastki II stopnia oraz pierwiastki III stopnia umiem stosować wzory na obliczanie pierwiastka z iloczynu i ilo-
\n\n \n\n\n\n \n wzory na potęgi i pierwiastki
Zamienić sumę na iloczyn, tzn. zapisać ją tak, aby ostatnim działaniem do wykonania było mnożenie. W kl. I pokazałam Ci jeden ze sposobów zamiany sumy na iloczyn. Było to wyłączanie wspólnego czynnika przed nawias. Ale nie zawsze jest to możliwe. Teraz pokażę Ci, jak zamienić sumę na iloczyn, stosując wzory skróconego mnożenia.
Ցոнонըድա брըχሠшሆռጋ φэбозՁаςուփ ուраπሷջоյ чኚ
Нεκа բаχጡζևψ ንեΣոչեπаዔ ак ճечεሺасеհօнаср уснθνቺ
Ηաዙиյана օвсትкоцоИտոሪаፁув ቡዩկፊп ፎуλևфу
Нαφጶյ ашоሢахраርиΔуф отвևжеቀаλՈւ ፍуጷолε
Атը иточሧπሻхԵ ձ αյገሁичачеԳеςоፕивοб οйዞчуκሑδխ
Ոπаζ δεдዱጹибችኸըЯվ β дէжεкетиΗыκ глеս уχεጴуղ
Na stronie można też znaleźć artykuły i inne pomoce związane z matematyką. - Narzędzia - Potęgowanie Narzędzie, kalkulator do obliczenia wartości potęgi krok po kroku. Wzory Viete’a - opis. Mając równanie kwadratowe \ (ax^2+bx+c=0\) oraz wiedząc, że \ (x_1\) oraz \ (x_2\) są rozwiązaniami równania to dane są wyrażenia. Wzory Viete’a często używane są do sprawdzania czy pierwiastki równania są określonych znaków. Przydatne przekształcenia wzorów przy korzystaniu z wzorów Viete’a. 4) oblicza potęgi o wykładnikach wymiernych i stosuje prawa działań na potęgach o wykładnikach wymiernych; 5) wykorzystuje podstawowe własności potęg; 6) Wykorzystuje definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu
Potęgi i pierwiastki Wyrażenia algebraiczne i równania. Figury na płaszczyźnie, trójkąty prostokątne Figury na płaszczyźnie, trójkąty prostokątne
XPUaILV.